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This paper reports a 3D-QSAR study using Catalyst software to explain the nature of interactions
between flavor compounds and â-lactoglobulin. A set of 35 compounds, for which dissociation
constants were previously determined by affinity chromatography, was chosen. The set was divided
into three subsets. An automated hypothesis generation, using HypoGen software, produced a model
that made a valuable estimation of affinity and provided an explanation for the lack of correlation
previously observed between the hydrophobicity of terpenes and the affinity for the protein. On the
basis of these results, it appears that aroma binding to â-lactoglobulin is caused by both hydrophobic
interactions and hydrogen bonding, which plays a critical role. Catalyst appears to be a reliable tool
for the application of 3D-QSAR study in aroma research.
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INTRODUCTION

Interaction between flavor compounds and proteins has been
studied for many years (1, 2). â-Lactoglobulin is one of the
best-characterized milk proteins (3-7) and belongs, together
with mammalian odorant binding proteins (OBP), to the
lipocalin superfamily (8). Binding of a variety of ligands,
particularly flavor compounds (10-14,15) has been demon-
strated (9).

Competition studies were performed for different ligands
(16-18), but interpretation of the results was difficult due to
the lack of information concerning the location of binding sites.
There have been conflicting results as to the binding site of
retinol to â-lactoglobulin. Considering the close structural
resemblance ofâ-lactoglobulin and retinol-binding protein, one
might conclude that retinol binds inside the central cavity (6).
However, other studies are in favor of an external binding site
(12). Both sites seem to exist with a preference of fixation to
the central cavity, the external binding site being occupied by
retinol only in the presence of other ligands (19). The accepted
interaction model was mainly based on hydrophobic interaction
(11,20). However, recent studies (10,21,22) suggest that other
factors are probably involved in aroma-protein interaction.

In a previous study, interactions betweenâ-lactoglobulin and
35 flavor compounds were analyzed (21). Affinity chromatog-
raphy was used to determine binding constants of flavor
substances belonging to five different chemical classes (esters,
pyrazines, phenolic compounds, terpenes, and furans). Within
one chemical class, affinity forâ-lactoglobulin increases with

hydrophobic chain length and logP values except for the
terpenic class, for which another explanation has to be found.

The aim of the present study is to explain these values of
dissociation constants using Catalyst, a recent software product
created for pharmacophore design. This focuses the modeling
on the molecular behavior of a ligand interacting with a receptor
from the point of view of the receptor, but using information
from only the ligand (23). Because this procedure requires the
considered ligands to have the same receptor site, we applied
this approach to the interaction of flavor compounds with
â-lactoglobulin.

MATERIALS AND METHODS

Compounds and Physicochemical Data.The binding between
â-lactoglobulin and 35 compounds belonging to four chemical classes
(terpenes, phenols, pyrazines, and furans) was previously investigated
in our laboratory by affinity chromatography studies, which provided
binding constant values (Kb) (21). In the present work, we used
dissociation constants (Kd ) 1/Kb). These 35 compounds, classified by
decreasing affinity, and their corresponding chemical families and
physicochemical data (logP, Kb, andKd) are reported inTable 1.

Computational Methods. The 35 compounds were built with
Catalyst (Catalyst version 4.6 software; Accelrys Inc., San Diego, CA,
August 1999) running on a Silicon Graphics workstation (SGI-O2).
Catalyst considers molecular flexibility by considering each compound
to be as a collection of conformers. For each compound, the conformers
were generated using Catalyst/COMPARE. The “best conformer
generation” procedure was applied to provide the best conformational
coverage for a maximum number of conformers generated defaulted
to 250 in a 0-20 kcal/mol range from the global minimum. The
particularity of the minimization using the best conformation generation
routine in Catalyst is the “poling” function, which is added to the
molecular mechanics CHARMm-like all-atom force field implemented
in the program (24) as an additional term. Minimization is performed
on the entire system (25).
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In Catalyst, a hypothesis is a model, which describes a ligand as a
set of chemical functions. These functions are defined within Catalyst
in a dictionary using the CHM language based on atomic characteristics
and include hydrophobic, hydrogen bond donor (HBD), hydrogen bond
acceptor (HBA), and positively and negatively ionizable sites (26). The
hypotheses should be able to predict the activities of different
compounds having the same receptor binding mechanism.

There are two ways to create hypotheses. In the first, molecular
structures are used as templates to interactively build a hypothesis. In
the second, HypoGen software attempts to automatically generate
hypotheses from a set of molecules that explain variations in activity
across the selected set of molecules (27). Starting with the most active
molecules, HypoGen analyzes the set of “active” molecules first. The
program performs a function mapping on each conformer using the
selected function mapping and explores the hypothesis space that is
accessible to the most active molecule. The most active compound set
(usually five to eight compounds) is determined using the “uncertainty”
parameter, noted Unc, so that

whereAmax is the activity of the most active compound andA the activity
of a compound of the most active set. HypoGen optimizes hypotheses,
which are present in the highly active compounds in the training set.

HypoGen selects the best hypotheses from many possibilities by
applying a cost analysis. The overall assumption is based on Occam’s
razor (between otherwise equivalent alternatives, the simplest model
is preferred). Simplicity is defined using the minimum description length
principle from information theory (27). The overall cost of a hypothesis
is calculated by summing three cost factors: a weight cost, an error

cost, and a configuration cost. HypoGen also calculates two theoretical
costs, the null and fixed costs that can be used to determine the
significance of the selected hypotheses. The fixed cost represents the
simplest model that fits the data perfectly. The null cost represents the
cost of a hypothesis with no features that estimates every activity to
be the average activity.

The statistical relevance of the various hypotheses is moreover as-
sessed on the basis of their cost relative to the null hypothesis and the
fixed hypothesis. The goal of hypothesis generation is to generate a
set of hypotheses with total costs as close as possible to the fixed cost.

In addition to the cost analysis, two parameters are involved: RMS
represents the deviation of the log(estimated activities) from the log-
(measured activities) normalized by the log(uncertainties) and indicates
the quality of “prediction” for the training set; correl is the linear
regression derived from the geometric fit index.

Manual Construction and Automated Generation of Hypotheses.
The two ways were used in our study. First, the manual construction
of hypotheses allowed to us identify empirical structure families in
order to sort out the compounds in several subsets. Then the automated
generation of hypotheses was carried out on these compound subsets.
Three chemical functions predefined in the Catalyst Feature Dictionary
were used: hydrogen bond acceptor (HBA), hydrogen bond donor
(HBD), and hydrophobic.

For hypothesis generation, the Unc value is usually defaulted to 3,
but in our case, the value of 1.2 was preferred because of the close
range of activities (Kd values of 6.8× 10-4 to 0.25). With Unc) 1.2,
compounds1-6 constitute the most active set. Other modifications
concern the MinPoints and MinSubsetPoints parameters. The MinPoints
parameter controls the minimum number of location constraints required
for any hypothesis. The MinSubsetPoints parameter defines the number

Table 1. Flavor Compounds, Their Chemical Families, and Physicochemical Data

no. flavor compound family log Pa Kb
a Kd ) 1/Kb

1 trans-3-oxo-p-menthane-8-thiol terpene 3.1g 1461 6.8 × 10-4

2 2-methoxy-4-(2-propenyl)phenol (eugenol) phenol 2.58c 1360 7.4 × 10-4

3 cis-3-oxo-p-menthane-8-thiol terpene 3.1g 1208 8.3 × 10-4

4 4-ethenyl-2-methoxyphenol (4-vinylguaiacol) phenol 2.08e 1165 8.6 × 10-4

5 R-menthone terpene 3.01g 1138 8.8 × 10-4

6 nerol terpene 3g 1134 8.8 × 10-4

7 3-sec-butyl-2-methoxypyrazine pyrazine 1.62c 912 1.1 × 10-3

8 4-ethylphenol phenol 2.26d 888 1.1 × 10-3

9 pulegone terpene 2.46g 857 1.2 × 10-3

10 4-ethyl-2-methoxyphenol (4-ethylguaiacol) phenol 2.38e 830 1.2 × 10-3

11 3-isobutyl-2-methoxypyrazine pyrazine 1.62c 795 1.3 × 10-3

12 (−)-carvone terpene 1.91g 748 1.3 × 10-3

13 linalool terpene 2.91g 565 1.8 × 10-3

14 (−)-carveol terpene 2.6g 542 1.8 × 10-3

15 R-terpineol terpene 3.15g 483 2.1 × 10-3

16 3-ethoxy-4-hydroxybenzaldehyde (ethylvanillin) phenol 1.76f 475 2.1 × 10-3

17 3-isopropyl-2-methoxypyrazine pyrazine 1.12c 452 2.2 × 10-3

18 4-methylphenol (p-cresol) phenol 1.95d 440 2.3 × 10-3

19 ethyl pentanoate ester 2.21b 366 2.7 × 10-3

20 4-hydroxy-3-methoxybenzaldehyde (vanillin) phenol 1.26d 319 3.1 × 10-3

21 ethyl 2-methylbutyrate ester 2.01b 288 3.5 × 10-3

22 ethyl 3-methylbutyrate ester 2.01b 284 3.5 × 10-3

23 2-methoxyphenol (guaiacol) phenol 1.33d 245 4.1 × 10-3

24 3-ethyl-2-methoxypyrazine pyrazine 0.82c 171 5.8 × 10-3

25 ethyl butyrate ester 1.71b 136 7.4 × 10-3

26 ethyl isobutyrate ester 1.51b 132 7.6 × 10-3

27 2-phenylethanol phenol 1.36d 132 7.6 × 10-3

28 5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone (abhexone) furan 0.32g 82 1.2 × 10-2

29 3-methyl-2-methoxypyrazine pyrazine 0.32c 62 1.6 × 10-2

30 2-methoxypyrazine pyrazine −0.24c 47 2.1 × 10-2

31 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (ethylfuraneol) furan 1.32g 39 2.6 × 10-2

32 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone) furan −0.22g 31 3.2 × 10-2

33 4-methoxy-2,5-dimethyl-3(2H)-furanone (mesifuran) furan 1.61g 19 5.3 × 10-2

34 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol) furan 0.78g 16 6.3 × 10-2

35 4-hydroxy-5-methyl-3(2H)-furanone (norfuraneol) furan 0.24g 4 2.5 × 10-1

a log P values are reported in a previous work (21) as follows: b calculated on the basis of the experimental value of ethyl propionate by applying the π-method;
c calculated on the basis of the experimental value of pyrazine by applying the π-method; d means of the experimental values cited by Hansh and Leo; e calculated on
the basis of the experimental value of guaiacol by applying the π-method; f calculated on the basis of the experimental value of vanillin by applying the π-method;
g calculated by applying the fragment method.

Amax × Unc - A/Unc> 0.0
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of chemical features that a hypothesis must map in all of the compounds
set. Several aroma molecules are small and rigid, and for this reason,
these two parameters are set to 2 in addition to the default value of 4.
In our case, the value of 3 for these parameters did not provide different
results from those obtained with 2 or 4.

RESULTS

Manual Construction of Hypotheses.A hypothesis was con-
structed for each molecule, using the lower energy conformer
as template and only two chemical functions, HBA and hydro-
phobic. Notice that any HBA function (e.g., alcohol and phenols)
can also be described as HBD, but we retained only the most
general case. Construction of the eugenol hypothesis is reported
in Figure 1. Two green spheres (initial and project points) repre-
sent one HBA. The blue spheres represent the hydrophobic fea-
tures and are located on hydrocarbon chains and the hydrophobic
aromatic ring.

On the basis of the number of HBA and hydrophobic features
mapped by each molecule, aromas are classified into five groups
designatedH1, H2, H3, H4, andH5:

H1 corresponds to hypotheses with three hydrophobic features
and one HBA (compounds5, 6, 9, 12, and14).

H2 corresponds to hypotheses with three hydrophobic features
and two HBA (compounds1-4, 7, 10, and21).

H3 corresponds to hypotheses with two hydrophobic features
and one HBA (compounds8, 13, 15, 18, 24, and27).

H4 corresponds to hypotheses with two hydrophobic features
and two HBA (compounds11, 17, 19, 22, 23, 25, 26, and29).

H5 corresponds to hypotheses with three HBA (compounds
16, 20, 28, and30-35).

Automated Generation of Hypotheses.The three features
HBA, HBD, and hydrophobic were used for automated hypoth-
esis generation.

First, among groupsH1-H5, we chose two subsets: the first
one comprised molecules corresponding to groupsH1 andH2,
and the other one molecules from groupH4. On these two
groups, automated hypothesis generation was carried out (results
not reported here). Then, on the basis of estimated affinity
values, a semiempirical classifying procedure was performed
to incorporate all compounds belonging to groupsH3 andH5
in a subset. This led to the retention of three major groups for
automatic hypothesis generation:

Group 1 is formed from 15 compounds (1-12,15, 17, and
18) and includes the most active compounds (1-6). The
alternative group without 4-ethylphenol (8) is designated 1a.

Group 2 is formed from 14 compounds (13-16and19-30)
in which the molecules have a relatively low affinity for
â-lactoglobulin.

Group 3 is formed by the six furans. Several compounds
belonging to group 1 (i.e.,1, 3, and6), or group 2 (i.e.,13,14,
and 16) should be successfully added to group 3 to generate
hypotheses, but we retained only the most active ligand1 to
form another subset. Group 3a is thus constituted by group 3
with the addition oftrans-menthanethiol1.

Using the Whole Group (35 Compounds).We perform a
hypothesis generation on the entire group setting the MinPoints
and MinSubsetPoints parameters first to 2 and then to the default
value 4. In these two cases, the same features (one HBA, two
hydrophobic) in the same topology constitute the most signifi-
cant hypothesis. With the MinPoints and MinSubsetPoints
parameters equal to 4, it appears that some affinity values are
under- and overestimated by the best significant hypothesis (cost
) 588.869, RMS) 5.46684, correl) 0.725947; fixed cost)
62.9089; null cost) 1160.57). Moreover, several compounds
of different experimental affinities are related to the same value
of estimatedKd (Figure 2).

Using Groups 1 and 1a.With the MinPoints and MinSub-
setPoints parameter values equal to 2, two or three hydrophobic
features, lacking HBA or HBD, make up some hypotheses ob-
tained from both groups 1 and group 1a. There is the case for
the best significant hypothesis obtained from group 1, composed
of three hydrophobic features (cost) 47.3801, RMS) 1.17003,
correl ) 0.822228; fixed cost) 34.94; null cost) 55.1857).

Using the default value of 4 for the MinPoints and MinSub-
setPoints parameters, the hypothesis generation on group 1 (15
compounds) provides hypotheses having HBA and/or HBD in
addition to hydrophobic features. None are relevant hypothesis
with satisfactory quality of predicted affinity (cost) 43.0945,
RMS ) 1.06827, correl) 0.85435; fixed cost) 31.9778; null
cost) 55.1857 for the best significant hypothesis).

Hypothesis generation run on group 1a (14 compounds, with-
out 4-ethylphenol8) provides the best result. Modifications of
the MinPoints and MinSubsetPoints parameter values have no
effect on features of the best significant hypothesis, constitut-
ed by one HBA and two hydrophobic (cost) 35.6008, RMS
) 0.431673, correl) 0.979505; fixed cost) 30.242; null cost

Figure 1. Mapping of eugenol on manually constructed hypothesis. HBA_1
and HBA_2 correspond to the two hydrogen bond acceptor features and
HBA_2 and HBA_21 to their projection spheres.

Figure 2. Graph regression obtained with best significant hypothesis
(named OutHypo-whole group.1) generated using the whole group.
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) 53.5795). There is very good estimation of affinities (Figure
3).

Using Group 2.Two hydrophobic, as for group 1a, but one
HBD instead of HBA, constitute the best hypothesis, obtained
with the MinPoints and MinSubsetPoints parameters set to 2.
There are mean estimations of activities (Figure 4), despite the
good values of cost and correlation parameters (cost) 49.0117,
RMS) 1.45461, correl) 0.933142; fixed cost) 32.2987; null
cost) 136.528).

Using Groups 3 and 3a.The most significant hypotheses
produced by both group 3 (cost) 18.3025, RMS) 0.228563,
correl) 0.998014; fixed cost) 18.0717; null cost) 48.7079)
and group 3a (total cost) 25.1534, RMS) 0.181536, correl
) 0.999605; fixed cost) 24.8042; null cost) 158.344) made
an excellent estimation of affinities (Figure 5).

The comparison of the three best significant automatically
generated hypotheses for groups 1a, 2, and 3 displayed inFigure
6 shows that the distance constraints between the two hydro-
phobic spheres are very different for hypotheses generated from
group 1a and 2 (5.43 and 7.22 Å, respectively), but relatively
close for hypotheses from groups 1a and 3 (5.43 and 4.31 Å,
respectively).

Statistical Validation. We performed a statistical cross-
validation study to assess the significance of the best hypotheses

using the catScramble program available in Catalyst. The
statistical significance is given by the equation

wherex ) total number of hypotheses having a total cost lower
than best significant hypothesis andy ) number (HypoGen runs
initial + random runs).

To obtain a 95% confidence level, 19 random spreadsheets
are generated (y) 20) and every generated spreadsheet is
submitted to HypoGen using the same experimental conditions
(functions and parameters) as the initial run.

For groups 2 and 3, on the one hand, and groups 1 and 3a,
on the other hand, the significance values are, respectively, 84
and 89%.

For the whole group and group 1a no generated hypothesis
by random runs has a total cost lower than OutHypo1 of (x )
0)) and significance) 95%.

Moreover, we complete the internal validation of group 1a
by 14 leave-one-out hypothesis generation runs. Except for the
training set withoutR-terpineol, we obtain the same set of
hypotheses (13 satisfactory cases of 14).

Figure 3. Graph regression obtained with best significant hypothesis for
group 1a (OutHypo-group.1a).

Figure 4. Graph regression obtained with best significant hypothesis for
group 2 (OutHypo-group.2).

Figure 5. Graph regression of the best significant hypothesis from group
3 (OutHypo-group.3).

Figure 6. Comparison of the best hypothesis from groups 1a (upper left),
2 (upper right), and 3 (bottom). Distances between center of features are
reported in angstroms.

significance) [1 -
(1 + x)

y ] × 100
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To perform a pseudo-external validation, we estimated
affinities of compounds of group 1a with the best significant
hypothesis of group 3. The result is satisfactory because errors
of estimated activities were between-1 and 2.

Mapping of Compounds onto Hypothesis.An alignment
of compounds from group 1a on the best significant hypothesis
is displayed inFigure 7 and shows that all of the compounds
are disposed very closely in the same area. The same good
alignment is also observed both for furans of group 3 (Figure
8a) and for compounds of group 3a (Figure 8b). On the other
hand, compounds from group 2 are dispersed in a conforma-
tional space around the best significant hypothesis (Figure 9).
Our attention was focused on some molecules of group 1.

(a) R-Terpineol, trans-Menthanethiol, and 3-sec-Butyl-2-
methoxypyrazinepyrazine (Compounds1, 7, and15).There are
three aromas of particular interest:1 (trans-menthanethiol) and
15 (R-terpineol) have very close logP values (3.1 and 3.15,
respectively), but the affinity ofR-terpineol15 is 3 times lower
than that of compound1. Inversely,1 and7 have close affinities,
but pyrazine7 presents a low hydrophobicity (logP ) 1.62).
Figure 10 shows mapping of these three compounds on the
best significant hypothesis of group 1a. The three molecules
map the HBA sphere feature. Whereas1 and15 map the two
hydrophobic features,R-terpineol7 maps only one.

(b) Trans and Cis Isomers of Menthanethiol and Phenols
(Compounds1-4 and 10). To explain the role of HBD in the
binding of aromas toâ-lactoglobulin, we examined the align-
ment of the most potent ligand1, its isomer3, and the phenols
2, 4, and10on another model as the best significant hypothesis
(total cost) 48.1225, RMS) 1.33136, correl) 0.77992; fixed
cost) 30.242; null cost) 53.5795). From the examination of
the fit it appears that only the SH function of1 maps the HBD
sphere. Neither of the two hydrogen bond features (HBD or
HBA) maps the OH functions of phenols (Figure 11).

(c) 4-Ethylphenol (Compound8). Figure 12 shows the
alignment of 4-ethylphenol8 with isomers of menthanethiol (1
and 3) and R-terpineol (15) on the hypothesis which better
estimates affinity of compound8. Mapping of 4-ethylphenol
appears to be very different from those of the three other
molecules.

DISCUSSION

From these results, it appears that hypotheses automatically
generated by the entire group fail to distinguish affinities of

aromas forâ-lactoglobulin, despite good statistical significance.
A hypothesis generation run must be performed on subsets (1,
1a, 2, 3, and 3a) to provide relevant hypotheses. The best
significance is obtained for group 1a.

Hypothesis generation runs provide some hypotheses con-
stituted only by two or three hydrophobic features (without

Figure 7. Alignment of compounds 1−3 on the best significant hypothesis
of group 1a.

Figure 8. Alignment of the furans on the best significant hypothesis for
group 3 (a, top) and of the furans and compound 1 on the best significant
hypothesis for group 3a (b, bottom).

Figure 9. Alignment of compounds from group 2 on the best significant
hypothesis for group 2.
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hydrogen bond feature). These models do not estimate the
affinity of aromas for theâ-lactoglobulin with a high reliability.
The model constituted by a pair of hydrophobic and hydrogen
bonding features is the most representative for the studied set
of aroma compounds. It is obtained from either the entire group
or groups 1, 1a, 2, or 3, although distances between hydrophobic
features are different. The HBA feature plays an essential role.
The HBD feature is rarely provided by automated hypothesis
generation runs, and corresponding hypotheses fail to give a
satisfactory estimation of affinity. However, the HBD feature
seems to play a role by increasing the affinity of the trans isomer
of menthanethiol forâ-lactoglobulin (Figure 11).

Alignment of furans andtrans-menthanethiol1 on the best
significant hypothesis provided by group 3a shows that one HBA
sphere is mapped by all of the molecules (Figure 8a). Only
SH and carbonyl functions of mesifurane are present in the
second HBA sphere. An example of a hypothesis comprising
HBA and HBD features shows that the HBD sphere is mapped
only by the SH function oftrans-menthanethiol. The oxygens
of hydroxyl or carbonyl functions of all furans fit the HBA
feature of the best significant hypothesis provided by this
training set. It is interesting to note that some oxygens of furans
never fit a hydrogen bond acceptor or donor feature but are

close to the hydrophobic spheres, and their negative charge
density is probably a disadvantage for binding to protein.

When compounds of groups 1a, 3, and 3a are closely aligned
to the best significant hypothesis related to each group,
compounds of group 2 are dispersed in the space described by
its hypothesis. That could be explained by the potential binding
for molecules of group 2 on different sites and/or nonspecific
surface sites of protein. Note that the significance for hypotheses
from group 2 is<87%. Good affinity estimation in addition to
statistical significance of generated hypotheses is obtained for
only group 1a. In this way, it is possible that only compounds
of group 1a could to be bound to the same inner site in the
central cavity (6). Despite the similar mapping of hydrophobic
and HBA hypotheses features, furans do not bind because of
their high electronic density.

Alignments oftrans-menthanethiol,R-terpineol, and 3-sec-
butyl-2methoxypyrazine on the most significant hypothesis of
group 1a provide an explanation of observed affinity for these
compounds. Despite good hydrophobicity,R-terpineol appears
to be incorrectly oriented to map the two hydrophobic sites,
but only one of them. In contrast, the low hydrophobe pyrazine
7 maps the pair of hydrophobic spheres of the hypothesis.
Hydrophobic chain length seems to have a minor importance
in comparison to the orientation of the chain in space, whereas
hydrogen bonding plays a crucial role.

4-Ethylphenol (8) seems to be a particular case, and its
alignment is very different from those of the other aromas of
the studied set (Figure 12). Introduction of this molecule in a
training set dramatically disrupts automated hypothesis genera-
tion, and thus the affinity is rarely well estimated. This
compound should belong to another family of aromas, which
probably recognizes another receptor site on the protein.

Our results provide a model constituted by three features
triangularly disposed: two hydrophobic and one HBA. Align-
ment of aroma molecules on this model gives a good explanation
for the absence of correlation between logP values and affinity
for â-lactoglobulin noted for terpenes. Moreover, it justifies the
good affinity observed for some pyrazines despite their low
hydrophobicities. This emphasizes the power of hydrophobic
chain topology and hydrogen bonding.

CONCLUSION

To our knowledge, this work is the first application of Catalyst
in aroma study. In the case of aromas, the main difficulty is the

Figure 10. Alignment of compounds 1, 7, and 15 on the best significant
hypothesis for group 1a.

Figure 11. Alignment of menthanethiols 1 and 3 and phenols 2, 4, 10,
and 18 on the hypothesis that better estimates the affinity of compound
1.

Figure 12. 4-Ethylphenol (8): alignment of compounds 1, 3, 15, and 8
(pink) on the best hypothesis for affinity estimation of 4-ethylphenol.
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choice of a subset used for hypothesis generation, and this can
be related to the existence of many different binding sites on
â-lactoglobulin. The multiple potential binding sites onâ-lac-
toglobulin are not in good agreement with the required condi-
tions for the use of Catalyst. It was necessary to first divide the
initial training set into several subsets in order to obtain
satisfactory automatically generated hypotheses.

Despite these limits, we succeeded in providing significant
hypotheses by automated generation that very well estimated
the affinity of the studied aromas forâ-lactoglobulin. A pair of
hydrophobic features and a hydrogen bond acceptor constitute
the minimum components of the best hypothesis model. The
hydrogen bond donor plays only a minor role in binding. This
provides an explanation for the observed binding constants,
which are not in relation to the molecules’ hydrophobicities. It
is important to note that the hydrophobicity is not the only
important feature; the topology of the hydrocarbon chain and
hydrogen bonding should be also essential.

This study can open the way for the use of Catalyst in aroma
research for modeling interaction and improving the understand-
ing of interactions between aromas and protein receptors.
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